Files
narco/jwt/jws_test.go
Alexandre Tuleu 26b7356b79 Adds more unit testing
Some basic security check for tempering of JWS.
2015-08-18 19:45:41 +02:00

212 lines
5.7 KiB
Go

package jwt
import (
"crypto/rsa"
"crypto/x509"
"encoding/json"
"fmt"
"regexp"
"time"
. "gopkg.in/check.v1"
)
type JWSSuite struct {
signers []Signer
hmacKey []byte
rsaKey *rsa.PrivateKey
}
var _ = Suite(&JWSSuite{})
func (s *JWSSuite) SetUpSuite(c *C) {
var err error
s.hmacKey = NewHMACKey(24)
s.rsaKey, err = CachedRSAkey()
c.Assert(err, IsNil)
s.signers = []Signer{
NewHMAC256Signer(s.hmacKey),
NewHMAC384Signer(s.hmacKey),
NewHMAC512Signer(s.hmacKey),
NewRSA256Signer(s.rsaKey),
NewRSA384Signer(s.rsaKey),
NewRSA512Signer(s.rsaKey),
}
}
func (s *JWSSuite) TestCanEncodeSigned(c *C) {
type foo struct {
A string
B int
}
j := &JOSE{}
for _, signer := range s.signers {
decoded := foo{A: "blah", B: 42}
res, err := EncodeJWS(j, decoded, signer)
c.Check(string(res), Matches, `\A[0-9A-Za-z_\-]+\.[0-9A-Za-z_\-]+.[0-9A-Za-z_\-]+\z`)
if c.Check(err, IsNil) == false {
continue
}
redecoded := foo{}
err = DecodeJWS(res, &redecoded, signer)
if c.Check(err, IsNil, Commentf("Algo is: %s", signer.Algorithm())) == true {
c.Check(redecoded, DeepEquals, decoded)
}
}
}
func (s *JWSSuite) TestCanEncodeUnprotected(c *C) {
type foo struct {
A string
B int
}
j := &JOSE{}
decoded := foo{A: "blah", B: 42}
res, err := EncodeJWS(j, decoded, nil)
c.Check(string(res), Matches, `\A[0-9A-Za-z_\-]+\.[0-9A-Za-z_\-]+.\z`)
c.Assert(err, IsNil)
redecoded := foo{}
err = DecodeJWS(res, &redecoded, nil)
c.Assert(err, IsNil)
c.Check(redecoded, DeepEquals, decoded)
}
func (s *JWSSuite) TestAttackerTriesToForgeAToken(c *C) {
type ident struct {
Iat int64
Adm bool
}
//--------------------------------------------------------------------------
// Server side
//--------------------------------------------------------------------------
//we create a token and sign it
validToken, err := EncodeJWS(&JOSE{}, ident{Iat: time.Now().Unix(), Adm: false}, s.signers[0])
c.Assert(err, IsNil)
//--------------------------------------------------------------------------
// Untrusted side
//--------------------------------------------------------------------------
// now an attacker takes our valid token, unmarshall it, and create a new one with no signature
t := ident{}
tokenRx := regexp.MustCompile(`\A([a-zA-Z0-9_\-]+)\.([a-zA-Z0-9_\-]+).([a-zA-Z0-9_\-]+)\z`)
matches := tokenRx.FindSubmatch(validToken)
c.Assert(matches, NotNil)
// extract JOSE
j, err := DecodeJOSE(matches[1])
c.Assert(err, IsNil)
// extract payload
payload := make([]byte, Base64DecodedLenFromStripped(len(matches[2])))
Base64Decode(payload, matches[2])
err = json.Unmarshal(payload, &t)
c.Assert(err, IsNil)
//we forge an admin token
t.Adm = true
//we un-sign the token, by using the none algorithm
forgedToken, err := EncodeJWS(j, t, nil)
//--------------------------------------------------------------------------
// Server side
//--------------------------------------------------------------------------
//we verify the forgedToken, it should fail
received := ident{Adm: false}
// please note that we speficy ecplitely the signer, and therefore
// the algorithm to use.
err = DecodeJWS(forgedToken, &received, s.signers[0])
//we got a wrong signature for our chosen algorithm
c.Assert(err, ErrorMatches, fmt.Sprintf(`jws: .* %s .*`, s.signers[0].Algorithm()))
// of course, our token remain Adm:false
c.Assert(received.Adm, Equals, false)
}
func (s *JWSSuite) TestAttackerTriesToForgeAHMACToken(c *C) {
type ident struct {
Iat int64
Adm bool
}
//--------------------------------------------------------------------------
// Server side
//--------------------------------------------------------------------------
//we create a token and sign it using RSA256
serverSigner := NewRSA256Signer(s.rsaKey)
validToken, err := EncodeJWS(&JOSE{}, ident{Iat: time.Now().Unix(), Adm: false}, serverSigner)
c.Assert(err, IsNil)
//--------------------------------------------------------------------------
// Untrusted side
//--------------------------------------------------------------------------
// now an attacker takes our valid token, unmarshall it, and create a new one with no signature
t := ident{}
tokenRx := regexp.MustCompile(`\A([a-zA-Z0-9_\-]+)\.([a-zA-Z0-9_\-]+).([a-zA-Z0-9_\-]+)\z`)
matches := tokenRx.FindSubmatch(validToken)
c.Assert(matches, NotNil)
// extract JOSE
j, err := DecodeJOSE(matches[1])
c.Assert(err, IsNil)
// extract payload
payload := make([]byte, Base64DecodedLenFromStripped(len(matches[2])))
Base64Decode(payload, matches[2])
err = json.Unmarshal(payload, &t)
c.Assert(err, IsNil)
//we forge an admin token
t.Adm = true
//now here is the trick, we sign an HMAC token using the serverPublicKey
publicKeyAsByte, err := x509.MarshalPKIXPublicKey(s.rsaKey.Public())
c.Assert(err, IsNil, Commentf("While marshalling key"))
//we create a new signing algorithm expecting the server will
//still use the assymetric key on the HMAC.
attackerSigner := NewHMAC256Signer(publicKeyAsByte)
//we un-sign the token, by using another symmetric algorithm, and
//the publickKey
forgedToken, err := EncodeJWS(j, t, attackerSigner)
//--------------------------------------------------------------------------
// Server side
//--------------------------------------------------------------------------
//we verify the forgedToken, it should fail
received := ident{Adm: false}
// please note that we speficy ecplitely the signer, and therefore
// the algorithm to use.
err = DecodeJWS(forgedToken, &received, serverSigner)
//we got a wrong signature for our chosen algorithm, we still are
//using the rsa algorithm
c.Assert(err, ErrorMatches, `crypto/rsa: verification error`)
// of course, our token remain Adm:false
c.Assert(received.Adm, Equals, false)
}