Adds more unit testing

Some basic security check for tempering of JWS.
This commit is contained in:
2015-08-18 19:45:41 +02:00
parent abe3cbab1f
commit 26b7356b79
2 changed files with 137 additions and 3 deletions

View File

@@ -80,9 +80,9 @@ func isBase64URLEncoding(b byte) bool {
}
// DecodeJWS decode an object encoded with the JWS serialized fromat
// as specified by RFX 7515. to avoid an attack where the unprotected
// JOSE header would contain a tempered signing algorithm, the Signer
// should also be specified.
// as specified by RFC 7515. to avoid an attack where the unprotected
// JOSE header would contain a modified alg field, the Signer should
// also be specified.
func DecodeJWS(data []byte, v interface{}, s Signer) error {
var headerLength, payloadLength int
for i, c := range data {

View File

@@ -2,6 +2,11 @@ package jwt
import (
"crypto/rsa"
"crypto/x509"
"encoding/json"
"fmt"
"regexp"
"time"
. "gopkg.in/check.v1"
)
@@ -75,3 +80,132 @@ func (s *JWSSuite) TestCanEncodeUnprotected(c *C) {
c.Check(redecoded, DeepEquals, decoded)
}
func (s *JWSSuite) TestAttackerTriesToForgeAToken(c *C) {
type ident struct {
Iat int64
Adm bool
}
//--------------------------------------------------------------------------
// Server side
//--------------------------------------------------------------------------
//we create a token and sign it
validToken, err := EncodeJWS(&JOSE{}, ident{Iat: time.Now().Unix(), Adm: false}, s.signers[0])
c.Assert(err, IsNil)
//--------------------------------------------------------------------------
// Untrusted side
//--------------------------------------------------------------------------
// now an attacker takes our valid token, unmarshall it, and create a new one with no signature
t := ident{}
tokenRx := regexp.MustCompile(`\A([a-zA-Z0-9_\-]+)\.([a-zA-Z0-9_\-]+).([a-zA-Z0-9_\-]+)\z`)
matches := tokenRx.FindSubmatch(validToken)
c.Assert(matches, NotNil)
// extract JOSE
j, err := DecodeJOSE(matches[1])
c.Assert(err, IsNil)
// extract payload
payload := make([]byte, Base64DecodedLenFromStripped(len(matches[2])))
Base64Decode(payload, matches[2])
err = json.Unmarshal(payload, &t)
c.Assert(err, IsNil)
//we forge an admin token
t.Adm = true
//we un-sign the token, by using the none algorithm
forgedToken, err := EncodeJWS(j, t, nil)
//--------------------------------------------------------------------------
// Server side
//--------------------------------------------------------------------------
//we verify the forgedToken, it should fail
received := ident{Adm: false}
// please note that we speficy ecplitely the signer, and therefore
// the algorithm to use.
err = DecodeJWS(forgedToken, &received, s.signers[0])
//we got a wrong signature for our chosen algorithm
c.Assert(err, ErrorMatches, fmt.Sprintf(`jws: .* %s .*`, s.signers[0].Algorithm()))
// of course, our token remain Adm:false
c.Assert(received.Adm, Equals, false)
}
func (s *JWSSuite) TestAttackerTriesToForgeAHMACToken(c *C) {
type ident struct {
Iat int64
Adm bool
}
//--------------------------------------------------------------------------
// Server side
//--------------------------------------------------------------------------
//we create a token and sign it using RSA256
serverSigner := NewRSA256Signer(s.rsaKey)
validToken, err := EncodeJWS(&JOSE{}, ident{Iat: time.Now().Unix(), Adm: false}, serverSigner)
c.Assert(err, IsNil)
//--------------------------------------------------------------------------
// Untrusted side
//--------------------------------------------------------------------------
// now an attacker takes our valid token, unmarshall it, and create a new one with no signature
t := ident{}
tokenRx := regexp.MustCompile(`\A([a-zA-Z0-9_\-]+)\.([a-zA-Z0-9_\-]+).([a-zA-Z0-9_\-]+)\z`)
matches := tokenRx.FindSubmatch(validToken)
c.Assert(matches, NotNil)
// extract JOSE
j, err := DecodeJOSE(matches[1])
c.Assert(err, IsNil)
// extract payload
payload := make([]byte, Base64DecodedLenFromStripped(len(matches[2])))
Base64Decode(payload, matches[2])
err = json.Unmarshal(payload, &t)
c.Assert(err, IsNil)
//we forge an admin token
t.Adm = true
//now here is the trick, we sign an HMAC token using the serverPublicKey
publicKeyAsByte, err := x509.MarshalPKIXPublicKey(s.rsaKey.Public())
c.Assert(err, IsNil, Commentf("While marshalling key"))
//we create a new signing algorithm expecting the server will
//still use the assymetric key on the HMAC.
attackerSigner := NewHMAC256Signer(publicKeyAsByte)
//we un-sign the token, by using another symmetric algorithm, and
//the publickKey
forgedToken, err := EncodeJWS(j, t, attackerSigner)
//--------------------------------------------------------------------------
// Server side
//--------------------------------------------------------------------------
//we verify the forgedToken, it should fail
received := ident{Adm: false}
// please note that we speficy ecplitely the signer, and therefore
// the algorithm to use.
err = DecodeJWS(forgedToken, &received, serverSigner)
//we got a wrong signature for our chosen algorithm, we still are
//using the rsa algorithm
c.Assert(err, ErrorMatches, `crypto/rsa: verification error`)
// of course, our token remain Adm:false
c.Assert(received.Adm, Equals, false)
}